Structure Reports

Online
ISSN 1600-5368

rac-($1 R, 2 R, 4 S$)-1,2-Dibromo-4-[(1R)-1,2dibromoethyl]cyclohexane

Robert Köppen, Matthias Koch, Franziska Emmerling* and Irene Nehls

BAM Federal Institute for Materials Research and Testing, Department Analytical Chemistry, Reference Materials, Richard-Willstätter-Strasse 11, D-12489 BerlinAdlershof, Germany
Correspondence e-mail: franziska.emmerling@bam.de
Received 12 November 2010; accepted 16 November 2010
Key indicators: single-crystal X-ray study; $T=294 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$; R factor $=0.032 ; w R$ factor $=0.086$; data-to-parameter ratio $=20.3$.

In the title compound, $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{Br}_{4}$, the cyclohexane ring exhibits a chair conformation. The $\mathrm{C}-\mathrm{Br}$ distances range from 1.964 (6) to 1.985 (5) \AA and the $\mathrm{C}-\mathrm{C}$ distances range from 1.496 (6) to 1.543 (7) A. Short intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ contacts [3.467 (4) \AA] occur in the crystal.

Related literature

The title compound is an environmentally novel brominated flame retardant (Arsenault et al., 2008; de Wit et al., 2010), also known as TBECH, which was recently identified in beluga whales and in the eggs of herring gulls and double-crested cormorants (Tomy et al., 2008; Gauthier et al., 2009). There is relatively little information available concerning the persistence of TBECH in environmental media, its bioaccumulation in food webs and the toxicity of the pure stereoisomers (Rattfelt et al., 2006; Muir et al., 2007; Khalaf et al., 2009; Nyholm et al., 2009, 2010). The Br‥Br contacts in the crystal structure can be classified according to Ramasubbu et al. (1986).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{Br}_{4}$
$M_{r}=427.82$

Monoclinic, $P 2_{1} / n$
$a=9.6163$ (14) A
$b=13.9193(19) \AA \AA$
$c=9.6354(15) \AA$
$Z=4$
Mo $K \alpha$ radiation
$\beta=111.769(9)^{\circ}$
$V=1197.7$ (3) \AA^{3}
$\mu=13.39 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
$0.14 \times 0.11 \times 0.05 \mathrm{~mm}$

Data collection

Bruker APEX CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.61, T_{\text {max }}=0.72$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.086$
$S=1.01$
2213 reflections
20037 measured reflections
2213 independent reflections 1471 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.104$

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5056).

References

Arsenault, G., Lough, A., Marvin, C., McAlees, A., McCrindle, R., MacInnis, G., Pleskach, K., Potter, D., Riddell, N., Sverko, E., Tittlemier, S. \& Tomy, G. (2008). Chemosphere, 72, 1163-1170.

Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Gauthier, L. T., Potter, D., Hebert, C. E. \& Letcher, R. J. (2009). Environ. Sci. Technol. 43, 312-317.
Khalaf, H., Larsson, A., Berg, H., McCrindle, R., Arsenault, G. \& Olsson, P. E. (2009). Environ. Health. Persp. 117, 1853-1859.

Muir, D., Howard, P. H. \& Meylan, W. (2007). Organohalogen Compd, 69, 1053-1056.
Nyholm, J. R., Lundberg, C. \& Andersson, P. L. (2010). Environ. Pollut. 158, 2235-2240.
Nyholm, J. R., Norman, A., Norrgren, L., Haglund, P. \& Andersson, P. L. (2009). Environ. Toxicol. Chem. 28, 1035-1042.

Ramasubbu, N., Parthasarathy, R. \& Murrayrust, P. (1986). J. Am. Chem. Soc. 108, 4308-4314.
Rattfelt, J., Norman, A., Norrgren, L., Haglund, P. \& Andersson, P. L. (2006). Organohalogen Compd, 68, 2007-2010.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tomy, G., Pleskach, K., Arsenault, G., Potter, D., McCrindle, R., Marvin, C., Sverko, E. \& Tittlemier, S. (2008). Environ. Sci. Technol. 42, 543-549.
Wit, C. A. de, Herzke, D. \& Vorkamp, K. (2010). Sci. Total Environ. 408, $2885-$ 2918.

supplementary materials

Acta Cryst. (2010). E66, o3318 [doi:10.1107/S160053681004763X]

rac-(1R,2R,4S)-1,2-Dibromo-4-[(1R)-1,2-dibromoethyl]cyclohexane

R. Köppen, M. Koch, F. Emmerling and I. Nehls

Comment

1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane, also known as tetrabromoethylcyclohexane (TBECH), is a cycloaliphatic brominated flame retardant used as an additive to flammable materials (e.g., polystyrene and polyurethane) to decrease the risk of accidental fire (Arsenault et al. 2008, Tomy et al. 2008, de Wit et al. 2010). Due to the presence of 4 chiral carbons (C1, C2, C4, C5) TBECH can exist as four diastereomeric pairs of enantiomers (Arsenault et al. 2008). The structural differences between these stereoisomers lead to concomitant variability in physicochemical properties such as hydrophobicity and water solubility, resulting in variable propensities for biological uptake and metabolism. In this respect, the complex stereoisomerism of TBECH is a challenge for its trace quantification in relevant environmental matrices and in the food chain. Recently TBECH has been found to bioaccumulate in fish after dietary exposure (Rattfelt et al. 2006, Nyholm et al. 2009) and it was identified as a possible persistent, bioaccumulative and endocrine disrupting organohalogen chemical (Muir et al. 2007, Khalaf et al. 2009). Calculated half-lives of technical TBECH in activated aerobic and anaerobic soil at $20^{\circ} \mathrm{C}$ were estimated to be 21 and 23 days, respectively (Nyholm et al. 2010). In the same study much slower degradation was observed during incubation at $8{ }^{\circ} \mathrm{C}$ (half-life: 120 days), suggesting that TBECH will persist in temperate climate zones for an extended period. However, the findings of TBECH in a maritime species (beluga whale) (Tomy et al. 2008) as well as seabirds (herring gulls and double-crested cormorants) (Gauthier et al. 2009) were reported for the first time.

The molecular structure of the compound and the atom-labeling scheme are shown in Fig 1. The compound crystallises as a racemate. and each molecule is involved in two intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ contacts [$\mathrm{d}(\mathrm{Br} 1-\mathrm{Br} 2): 3.467(4) \AA$] below the sum of their van der Waals radii, which influence the molecular packing and lead to the formation of chains along the b axis. Generally, halogen \cdots halogen contacts $\mathrm{C}-X \cdots X-\mathrm{C}$ are defined as type I if the $\mathrm{C}-X \cdots X$ angle $\theta 1$ is equal or nearly equal to the $X \cdots X$ - C angle $\theta 2$. If σ imeq 180° and σ imeq 90°, the contact is defined as type II (Ramasubbu et al. 1986). For the title compound the respective values amount to $\theta 1(\mathrm{C} 1-\mathrm{Br} 1 \cdots \mathrm{Br} 2)=161.2(2)^{\circ}$ and $\theta 1(\mathrm{C} 2-\mathrm{Br} 2 \cdots \mathrm{Br} 1)=137.3(2)^{\circ}$ These values are in acoordance with type I contacts arise as a result of close packing about an inversion center.

Experimental

In a $2 L$ two-necked round bottom flask equipped with a thermometer and a 50 ml dropping funnel, $20.1 \mathrm{~g}(186 \mathrm{mmol}) 4-$ vinylcyclohexene were dissolved in 1000 mL of dichloromethane. Bromine ($19.5 \mathrm{ml}, 381 \mathrm{mmol}$) was slowly added through the dropping funnel within 60 min . Light was excluded from the flask and the reaction mixture was stirred for 20 hrs at ambient temperature. Then excess bromine and dichloromethane were removed by rotary evaporation and the white residue was recrystallied from methanol. For single-crystal x-ray crystallography colourless crystals of the title compound were grown by slow solvent evaporation from methanol at ambient temperature in the absence of light.

supplementary materials

Refinement

The $\mathrm{C}-\mathrm{H}$ hydrogen atoms were located in difference maps and and fixed in their found positions with $U_{\text {iso }}(\mathrm{H})=1.2$ of the parent atom $U_{\text {eq }}$ or $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$.

Figures

rac-(1R,2R,4S)-1,2-Dibromo-4-[(1R)-1,2-dibromoethyl]cyclohexane

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{Br}_{4}$
$M_{r}=427.82$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=9.6163$ (14) \AA
$b=13.9193$ (19) \AA
$c=9.6354(15) \AA$
$\beta=111.769(9)^{\circ}$
$V=1197.7(3) \AA^{3}$
$Z=4$
$F(000)=800$
$D_{\mathrm{x}}=2.372 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 48 reflections
$\theta=2.2-35^{\circ}$
$\mu=13.39 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
Block, colourless
$0.14 \times 0.11 \times 0.05 \mathrm{~mm}$

Data collection

Bruker APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
graphite
$\omega / 2 \theta$ scans

2213 independent reflections
1471 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.104$
$\theta_{\text {max }}=25.4^{\circ}, \theta_{\text {min }}=2.6^{\circ}$

Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.61, T_{\text {max }}=0.72$
20037 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.086$
$S=1.01$
2213 reflections
109 parameters
0 restraints
$h=-11 \rightarrow 11$
$k=-16 \rightarrow 16$
$l=-11 \rightarrow 11$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0411 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.74 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.55$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
Br1	$-0.22923(7)$	$0.01287(4)$	$0.19367(7)$	$0.0611(2)$
Br 2	$-0.03998(7)$	$0.31412(4)$	$0.35632(7)$	$0.0567(2)$
Br 3	$0.29332(7)$	$-0.05633(4)$	$0.35758(7)$	$0.0640(2)$
Br 4	$0.48396(8)$	$0.23052(5)$	$0.26547(9)$	$0.0742(2)$
C 1	$-0.1618(6)$	$0.1472(3)$	$0.1927(6)$	$0.0424(13)$
H 1	-0.2493	0.1896	0.1612	0.051^{*}
C2	$-0.0616(5)$	$0.1722(3)$	$0.3510(6)$	$0.0366(12)$
H2	-0.1122	0.1535	0.4184	0.044^{*}
C3	$0.0879(5)$	$0.1238(3)$	$0.4013(5)$	$0.0377(12)$
H3A	0.0747	0.0558	0.4150	0.045^{*}
H3B	0.1510	0.1501	0.4972	0.045^{*}
C4	$0.1672(5)$	$0.1358(3)$	$0.2906(5)$	$0.0340(12)$
H4	0.1874	0.2045	0.2864	0.041^{*}
C5	$0.3200(6)$	$0.0841(4)$	$0.3478(6)$	$0.0436(13)$

H5	0.3768	0.1071	0.4492	0.052^{*}
C6	$0.4170(6)$	$0.0966(4)$	$0.2563(7)$	$0.0596(16)$
H6A	0.3606	0.0789	0.1532	0.072^{*}
H6B	0.5033	0.0545	0.2945	0.072^{*}
C7	$0.0666(5)$	$0.1057(4)$	$0.1343(5)$	$0.0434(13)$
H7A	0.1158	0.1201	0.0652	0.052^{*}
H7B	0.0502	0.0369	0.1325	0.052^{*}
C8	$-0.0828(6)$	$0.1569(4)$	$0.0840(6)$	$0.0450(14)$
H8A	-0.0671	0.2245	0.0705	0.054^{*}
H8B	-0.1469	0.1312	-0.0120	0.054^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0576(4)$	$0.0503(3)$	$0.0783(5)$	$-0.0152(3)$	$0.0285(4)$	$-0.0085(3)$
Br2	$0.0605(4)$	$0.0369(3)$	$0.0721(5)$	$0.0061(3)$	$0.0240(4)$	$-0.0052(3)$
Br3	$0.0600(4)$	$0.0451(3)$	$0.0740(5)$	$0.0157(3)$	$0.0100(4)$	$-0.0049(3)$
Br4	$0.0771(5)$	$0.0802(5)$	$0.0861(6)$	$-0.0076(4)$	$0.0545(4)$	$-0.0118(4)$
C1	$0.040(3)$	$0.038(3)$	$0.050(4)$	$0.006(2)$	$0.018(3)$	$0.007(2)$
C2	$0.036(3)$	$0.037(3)$	$0.040(3)$	$0.003(2)$	$0.018(3)$	$0.001(2)$
C3	$0.041(3)$	$0.043(3)$	$0.025(3)$	$0.005(2)$	$0.008(3)$	$-0.001(2)$
C4	$0.032(3)$	$0.035(3)$	$0.030(3)$	$0.001(2)$	$0.006(2)$	$-0.004(2)$
C5	$0.035(3)$	$0.047(3)$	$0.045(4)$	$0.003(2)$	$0.010(3)$	$-0.011(3)$
C6	$0.048(4)$	$0.067(4)$	$0.066(4)$	$0.001(3)$	$0.025(3)$	$-0.023(3)$
C7	$0.036(3)$	$0.061(3)$	$0.032(3)$	$0.011(3)$	$0.011(3)$	$0.003(3)$
C8	$0.042(3)$	$0.056(3)$	$0.034(3)$	$0.004(3)$	$0.010(3)$	$0.005(3)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{C} 1$	$1.980(5)$
$\mathrm{Br} 2-\mathrm{C} 2$	$1.985(5)$
$\mathrm{Br} 3-\mathrm{C} 5$	$1.979(5)$
$\mathrm{Br} 4-\mathrm{C} 6$	$1.964(6)$
$\mathrm{C} 1-\mathrm{C} 8$	$1.511(7)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.512(7)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9800
$\mathrm{C} 2-\mathrm{C} 3$	$1.496(6)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9800
$\mathrm{C} 3-\mathrm{C} 4$	$1.533(7)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9700
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9700
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 2$	$112.5(4)$
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{Br} 1$	$109.7(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$	$107.5(3)$
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{H} 1$	109.0
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	109.0
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{H} 1$	109.0
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$113.5(4)$

$\mathrm{C} 4-\mathrm{C} 7$	$1.516(7)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.543(7)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9800
$\mathrm{C} 5-\mathrm{C} 6$	$1.512(7)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9800
$\mathrm{C} 6-\mathrm{H} 6 A$	0.9700
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9700
$\mathrm{C} 7-\mathrm{C} 8$	$1.513(7)$
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9700
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9700
$\mathrm{C} 8-\mathrm{H} 8 A$	0.9700
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$116.8(5)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{Br} 3$	$105.1(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 3$	$110.8(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	108.0
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	108.0
$\mathrm{Br} 3-\mathrm{C} 5-\mathrm{H} 5$	108.0
C5-C6-Br4	$110.2(4)$

sup-4

supplementary materials

C3-C2-Br2	111.2 (3)	C5-C6-H6A	109.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 2$	106.1 (3)	Br4-C6-H6A	109.6
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	108.7	C5-C6-H6B	109.6
C1-C2-H2	108.7	$\mathrm{Br} 4-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	109.6
$\mathrm{Br} 2-\mathrm{C} 2-\mathrm{H} 2$	108.7	H6A-C6-H6B	108.1
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	113.1 (4)	C8-C7-C4	111.6 (4)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.0	C8-C7-H7A	109.3
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.0	C4-C7-H7A	109.3
C2-C3-H3B	109.0	C8-C7-H7B	109.3
C4-C3-H3B	109.0	C4-C7-H7B	109.3
H3A-C3-H3B	107.8	H7A-C7-H7B	108.0
C7-C4-C3	111.2 (4)	C1-C8-C7	113.4 (4)
C7-C4-C5	113.5 (4)	C1-C8-H8A	108.9
C3-C4-C5	110.8 (4)	C7-C8-H8A	108.9
C7-C4-H4	107.0	C1-C8-H8B	108.9
C3-C4-H4	107.0	C7-C8-H8B	108.9
C5-C4-H4	107.0	H8A-C8-H8B	107.7
C8-C1-C2-C3	-48.8 (6)	$\mathrm{C} 7-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 3$	-61.2 (5)
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	72.1 (4)	C3-C4-C5-Br3	64.7 (4)
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 2$	73.5 (4)	C4-C5-C6-Br4	66.9 (5)
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 2$	-165.6 (2)	Br3-C5-C6-Br4	-170.0 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	50.4 (6)	C3-C4-C7-C8	53.3 (5)
$\mathrm{Br} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-69.1 (5)	C5-C4-C7-C8	179.0 (4)
C2-C3-C4-C7	-52.6 (5)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 7$	50.4 (6)
C2-C3-C4-C5	-179.7 (4)	$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 7$	-69.2 (5)
C7-C4-C5-C6	59.0 (6)	C4-C7-C8-C1	-53.2 (6)
C3-C4-C5-C6	-175.1 (4)		

supplementary materials

Fig. 1

Fig. 2

